
Page 18 FoxRockX November 2010

Understanding Business
Objects, Part 3
Once you have business objects, you need to connect them to the user interface. Plus changing the
application is easier than when business logic and UI code are mingled

Tamar E. Granor, Ph.D.

In my last few articles, I introduced the idea of
business objects, talked about why I had trouble
learning to work with them, and walked through
the kinds of code you put in business objects. In
the final installment of this series, I'll show how to
connect business objects to user interface objects
and talk about handling changes in requirements.
My last two articles introduced two applications,
NMS and Sudoku. NMS, developed for a client,
allows users to monitor and manage hardware
in utility substations; the first article in this series
contains an overview of this application. Sudoku is
an implementation of the popular logic puzzle. The
second article in this series explains how the puzzle
works, as well as describing the business objects
and showing much of their code.

Connecting business objects to
the user interface
The methods of the business objects form the engine
of the application. If you want, you can use them
programmatically (or even from the Command
Window) to perform all the operations. But a user
interface to allow users to interact with the objects
makes it much easier. You then need some way to
connect the business objects to the controls in the
UI. Once you establish such a connection, forms
and controls can call on business object methods to
take appropriate action.

A conventional data entry application might
bind controls to properties of the business objects.
Alternatively, data might be stored in a cursor,
with the business objects simply providing opera-
tions on the data.

For a highly graphical application like NMS or
Sudoku, however, there may not even be controls to
which data can be directly bound, as much of the UI
may be built from objects without ControlSources.
However, UI objects can have references to business
objects, in order to call on the business objects for
data and services.

For example, in NMS, the Network View form
has a custom property, oNetwork, that points to a

bizNetwork object. Similarly, the Node View form
has an oNode property that points to the bizNode
object for the node currently displayed. The class
cntShelf, which provides the visual representation
of one shelf, has an oBizShelf property that points
to the corresponding bizShelf object.

Sudoku uses a container class, cntBoard, to
hold the grid. It has an oBizGame property that is
assigned an object reference to the corresponding
bizGame object. Individual cells are represented
by cntCell objects, which have a custom oBizCell
property to point to the corresponding bizCell.

The game also has a form class that contains
methods to instantiate cntBoard and to call on both
UI and business object methods to do things such
as start a new game, or clear all the user-entered
data out from the current game, allowing the user
to start over. Figure 1 shows the game board.

Figure 1. The Sudoku form contains a cntBoard object and a
few buttons. Form code handles construction of the board, as
well as calling on cntBoard and the business objects to imple-
ment the button actions.

November 2010 FoxRockX Page 19

Constructing the forms
In conventional applications, forms are generally
pretty much defined at design-time. In highly
graphical applications, much form construction
happens at runtime. The graphical objects have
methods for constructing themselves based on their
business objects. In NMS, the Network View form
has a method called DrawNetwork that controls the
process of drawing the nodes on the form. Similarly,
the Node View form has a DrawNode method that
converts the data for the referenced bizNode into
its graphical representation. Each of these methods
uses the business objects to guide construction of
the appropriate graphical objects.

In Sudoku, cntBoard has a method BuildBoard
(Listing 1) that receives a bizGame object as a
parameter and adds cells and dividers to the board
based on that object and the hierarchy it references.
BuildBoard calls two additional methods, AddCells
and AddDividers, to do the actual work.

Listing 1. cntBoard's BuildBoard method controls the process
of filling the board with the appropriate number of cells and
adding the right data.
LPARAMETERS	oBizGame

This.oBizGame	=	m.oBizGame

This.nSize	=	This.oBizGame.nSize

This.AddCells()
This.AddDividers()

RETURN

AddCells, shown in Listing 2, loops through
the required number of rows and columns, adding
cells one at a time, and connecting each to the
appropriate bizCell object. This method also binds
the custom ValueChanged method of each cell
to the board's BoardChanged method; the next
section shows how this architecture lets us update
the display after each user change.

Listing 2. The Sudoku cells are added to the grid by cntBoard's
AddCells method, which hooks them to the right bizCell objects.
LOCAL	nRow,	nCol,	cCellName,	oCell,	oBizCell

FOR	nRow	=	1	TO	This.nSize
		FOR	nCol	=	1	TO	This.nSize
				cCellName	=	"cntCellR"	+	;
																TRANSFORM(m.nRow)	+	"C"	+	;
																TRANSFORM(m.nCol)
				oBizCell	=	This.oBizGame.GetCell(;
 m.nRow, m.nCol)

				This.NewObject(m.cCellName,	"cntCell",	;
						"Components.VCX",	"",	m.oBizCell)
				oCell	=	EVALUATE("This."	+	m.cCellName)

				WITH	oCell
						.Left	=	(m.nCol-1)	*	(oCell.Width	+	;
														This.nSpaceBetween)	+	;
 This.nSpaceBetween
						.Top	=	(m.nRow-1)	*	(oCell.Height	+	;
													This.nSpaceBetween)	+	;

 This.nSpaceBetween
 .Visible = .T.
				ENDWITH

 * Bind changes in this cell to the
 * board, so we can check for validity.
				BINDEVENT(oCell,	"ValueChanged",	;
 This, "BoardChanged", 1)
		ENDFOR
ENDFOR

*	Size	the	container
This.Width	=	This.nSize	*	(oCell.Width	+	;
		This.nSpaceBetween)	+	This.nSpaceBetween
This.Height	=	This.nSize	*	(oCell.Height	+	;
		This.nSpaceBetween)	+	This.nSpaceBetween

RETURN

The Init method of cntCell handles a variety
of "bookkeeping" to set the cell up with the right
data.

Listing 3. cntCell's Init method links the cell container to the
corresponding bizCell object, and sets key properties of the
container based on data in the business object.
LPARAMETERS	oBizCell

DODEFAULT()
This.txtCellValue.Center()

This.oBizCell	=	m.oBizCell
IF	This.oBizCell.IsFixed()
 This.txtCellValue.ReadOnly = .T.
 This.txtCellValue.ForeColor = ;
 This.nFixedCellColor
ENDIF	

IF	NOT	This.oBizCell.IsEmpty()
		This.SetValue(This.oBizCell.nValue)
ENDIF	

RETURN

The version of AddDividers in cntBoard handles
square blocks. To handle non-square variations,
cntBoard must be subclassed.

Listing 4. In cntBoard, AddDividers create square blocks. For
variants with non-square blocks, subclass and override this
method.
*	Add	block	dividers.	

LOCAL	nBlocks,	nCellHeight,	nCellWidth,	;
						nBlock,	oLine,	cLineName

*	Number	of	Blocks	in	each	direction
nBlocks	=	SQRT(This.nSize)

IF	PEMSTATUS(This,	"cntCellR1C1",	5)
 nCellHeight = This.cntCellR1C1.Height
 nCellWidth = This.cntCellR1C1.Width
ELSE
 * Default
		nCellHeight	=	50
		nCellWidth	=	50
ENDIF

*	Horizontal	first
FOR nBlock = 1 TO m.nBlocks - 1
		cLineName	=	"linHorizonal"	+	;
														TRANSFORM(m.nBlock)

Page 20 FoxRockX November 2010

		This.NewObject(m.cLineName,	;
																	"linDividerHorizontal",	;
 "Components.vcx")
		oLine	=	EVALUATE("This."	+	m.cLineName)

		WITH	oLine
 .Left = 0
 .Width = This.Width
 .Top = m.nBlock * m.nBlocks *
										(m.nCellHeight	+	
											This.nSpaceBetween)	+	;
 This.nSpaceBetween/2
 .Visible = .T.
		ENDWITH	
ENDFOR	

*	Now	vertical
FOR nBlock = 1 TO m.nBlocks - 1
		cLineName	=	"linVertical"	+	;
														TRANSFORM(m.nBlock)
		This.NewObject(m.cLineName,	;
 "linDividerVertical", ;
 "Components.vcx")
		oLine	=	EVALUATE("This."	+	m.cLineName)

		WITH	oLine
 .Left = m.nBlock * m.nBlocks * ;
											(m.nCellWidth	+	;
												This.nSpaceBetween)	+	;
 This.nSpaceBetween/2
 .Top = 0
 .Height = This.Height
 .Visible = .T.
		ENDWITH	
ENDFOR	

RETURN

Calling on business objects
Once the visual representation of the business objects
has been constructed, whether it's conventional
or highly graphical, the user can interact with it.
As a user acts, the form needs to respond. Many
responses call on the underlying business objects for
things such as checking validity, adding graphical
objects, storing data, and much more.

For example, in NMS, a user can right-click
in Network View and add a node to the network.
Doing so adds a bizNode object to the collection
(after collecting additional information from the
user) and then to the graphical display. In the newer
version of Node View, the individual ports on the
cards have tooltips that provide information about
how they're connected to ports of other nodes.
The code for those tooltips calls on the underlying
business objects to provide the data to display.

In Sudoku, the cntCell object contains a
textbox. Its Valid method uses RaiseEvent() to fire
the container's custom Valid method (shown in
Listing 5). That method checks the user's input for
basic validity (that is, whether the entry is in the set
of values accepted by this game); then, it calls the
cell's ValueChanged method.

Listing 5. When a user types a new value into a cell, cntCell.
Valid fires.
IF	NOT	This.Parent.IsInputValid(;
 This.txtCellValue.Value)
 This.ClearValue()
ENDIF	

This.ValueChanged()

ValueChanged (Listing 6) converts the user's
entry into a numerical value (this design supports
any set of characters to fill the grid) and then
tells the bizCell to update itself. As noted in the
previous section, cntCell.ValueChanged is bound
to cntBoard.BoardChanged, so after this method
finishes, BoardChanged fires. It checks whether
the new value is valid according to the rules of
the game, and if so, checks whether the game is
complete; it's shown in Listing 7. Once the game is
complete, it prevents the user from making further
changes.

Listing 6. cntCell's ValueChanged method converts the new
value into a number and calls SetValue for the associated
bizCell.
* Pass the new value back to the object model
LOCAL	nValue

nValue = This.ConvertDisplayToValue(;
 This.txtCellValue.Value)

This.oBizCell.SetValue(m.nValue)

RETURN

Listing 7. The BoardChanged method of cntBoard fires after a
change in any cell. If the new value is valid, it checks whether
the puzzle has been completed, using oBizGame's IsComplete
method.
* Something changed. Check for validity.
IF	NOT	This.lWinReported
		IF	NOT	This.CheckForConflicts()
				*	No	conflicts,	so	check	whether	
 * we're done.
				IF	This.oBizGame.IsComplete()
						IF	PEMSTATUS(ThisForm,	;
															"GameIsComplete",	5)
								ThisForm.GameIsComplete()
						ENDIF
						This.FreezeBoard()
 This.lWinReported = .T.
				ENDIF
		ENDIF	
ENDIF	

RETURN

BoardChanged calls on the CheckForConflicts
method of cntBoard (Listing 8). This method uses
bizGame's CheckForConflicts method to get a list
of cells that have some kind of violation of the
rules, and then tells each of those cells to show that
it has a conflict. In this implementation, I've chosen
to show conflicts by using a different forecolor, but
using a separate ShowConflict method means that
you can easily change the way conflicts are shown.

November 2010 FoxRockX Page 21

Listing 8. The CheckForConflicts method of cntBoard calls
bizGame's CheckForConflicts method. That method returns a
collection of bizCell objects that represent rules violations. The
method traverses that collection and finds the corresponding
cntCell for each, so that it can be told to show the conflict.
LOCAL	oConflicts,	oBizCell,	oCell

oConflicts	=	This.oBizGame.CheckForConflicts()

IF	NOT	ISNULL(m.oConflicts)	AND	;
		oConflicts.Count	>	0
		FOR	EACH	oBizCell	IN	m.oConflicts	FOXOBJECT	
 oCell = ;
						This.GetCellByBizCell(m.oBizCell)
				IF	NOT	ISNULL(m.oCell)
						oCell.ShowConflict()
				ENDIF
		ENDFOR
ENDIF

RETURN	oConflicts.Count	>	0

Handling changed requirements
One of the big selling points for business objects is
that they make it easier to change your application.
You can change the engine without changing the
interface and vice versa.

With NMS, requirements have changed repeat-
edly in the several years I've been working on the
application. As I described in the first article in this
series, the biggest change came when moving from
the original hardware to the new version. But there
have been many other changes as well, and almost
every time, the separation of the business objects
from their visual representation has simplified the
process.

Similarly, once the basic version of Sudoku was
working, I had ideas for improving the game.

Providing hints
First, I realized that I wanted to offer a "hint" button
on the form. In order to give the user a hint (that
is, fill in one cell), I needed to have the solution
available. So my original strategy of using only the
fixed cells as input would no longer work.

Choosing a new input format wasn't difficult.
To put the entire solution in a text file, comma-
separated rows of data representing the rows of the
solution made sense to me. The only tricky question
was how to indicate fixed values. I chose to follow
those with an asterisk. So a complete data file for a
9x9 game looks like Listing 9.

Listing 9. The data file format for the revised Sudoku game,
with hints available, uses one row for each row on the board.
Fixed values are indicated by the asterisk following the value.
6*,9,1,3*,7,8,2*,5*,4*
7*,8*,2*,4*,1,5,6,3*,9
5,3,4,6,9,2*,7*,8,1*
2,1,5*,8*,6*,9*,3*,4*,7*
4,7,8*,1,5,3,9*,6,2
3*,6*,9*,7*,2*,4*,8*,1,5

8*,5,7*,9*,4,6,1,2,3
9,2*,6,5,3,1*,4*,7*,8*
1*,4*,3*,2,8,7*,5,9,6*

In order to have the solution available, we need
to store it in the game, so I added a new property,
nSolution, to bizCell to hold the solution value for
that cell.

The next step was to add a method to bizGame
to read and parse this data. While we could make
two passes through the data, one to store the
solution values, and one to set the fixed data values
using bizGame's existing AddFixedData method, it
seemed to make more sense to handle both items as
once. The new ReadData method (Listing 10) reads
in the data file, parses it, and then stores the solution
values. Like a number of other methods discussed
earlier, the actual storage of the data is handled by
calling a method of cbzSetOfGroups, which passes
the call down through the hierarchy. Ultimately,
bizCell's new SetSolution method (shown in Listing
11) is called to do the actual storage.

Listing 10. The new ReadData method of bizGame reads in a
data file, parses it, and stores the solution data, setting up the
fixed cells at the same time.
* Read in the data for this game.

LPARAMETERS	cDataFile

LOCAL	cContent,	aRows[1],	aRowData[1],	nRow,	
nCol, nValue, lFixed

cContent	=	FILETOSTR(m.cDataFile)

IF	ALINES(aRows,	m.cContent)	<>	This.nSize
 * Data is missing
		RETURN	.F.
ENDIF

FOR	nRow	=	1	TO	This.nSize
 * Parse this line
		IF	ALINES(aRowData,	aRows[m.nRow],	",")	;
				<>	This.nSize
 * Data is missing
				RETURN	.F.
		ENDIF	

		FOR	nCol	=	1	TO	This.nSize
				IF	RIGHT(aRowData[m.nCol],	1)	=	"*"
						nValue	=	VAL(LEFT(aRowData[m.nCol],	;
															LEN(aRowData[m.nCol])-1))
 lFixed = .T.
 ELSE
						nValue	=	VAL(aRowData[m.nCol])
 lFixed = .F.
				ENDIF	
 This.oRows.SetSolution(m.nRow, m.nCol, ;
 m.nValue, m.lFixed)
		ENDFOR	
ENDFOR	

RETURN

Page 22 FoxRockX November 2010

Listing 11. bizCell's new SetSolution method stores the solu-
tion value for the cell, and if the cell is fixed, sets it value.
LPARAMETERS	nValue,	lFixed

This.nSolution = m.nValue
IF	m.lFixed
 This.SetValue(m.nValue, m.lFixed)
ENDIF	

RETURN

On the UI side, the main work of providing
a hint is handled by a new method of cntBoard,
GiveHint. This method (shown in Listing 12) finds
a random empty cell and sets its value to its solu-
tion value. Note the two-step process for setting the
value. First, the business object's (bizCell's) value
is set, then the method looks up the corresponding
cntCell object and sets its value to the new bizCell
value.

Listing 12. cntBoard's GiveHint method locates an empty cell
and sets it value to its solution value.
*	Give	the	user	a	hint	by	filling	in	an
* empty cell.

LOCAL	oBizCell,	oCell

* Get a random empty cell
oBizCell	=	This.oBizGame.GetEmptyCell()

IF	NOT	ISNULL(m.oBizCell)
 * Set its value to its solution
		oBizCell.SetValue(oBizCell.nSolution)

		oCell	=	This.GetCellByBizCell(m.oBizCell)
		oCell.SetValue(oBizCell.nValue)
ENDIF

RETURN

Handling the jigsaw variation
Once I had the basic game working with hints (as
well as the ability to clear the game and to start a
new game), I turned to the question of handling
the jigsaw Sudoku variant (shown in the second ar-
ticle in this series) where blocks can be any shape
(though still must be contiguous). I assumed from
the beginning that such variants would require
subclassing, but as I tackled this variant, I found
that I needed to make some changes to the code for
the regular game as well, to avoid repeating code
in the subclass.

The first step was to figure out how to specify
the blocks. I considered several possibilities, and
ultimately decided to add one row to the input file
for each block; that row would contain a list of the
cells in that block. So, for a 9x9 game, the input file
contains 18 rows: the first 9 are the solution in the
format described above, while the last 9 lay out the
blocks. The format for each block is a comma-sep-
arated list of pairs; each pair is in the form "row/
column". Listing 13 shows an example.

Listing 13. For jigsaw Sudoku, the input file contains both the
solution and the list of cells for each block.
1*,9,7,2,3,6*,4,5*,8
2,8,4*,5,9*,7,1,6*,3
3*,7*,5,4,1,8,2*,9,6
4,1,6,7,8,2,5,3,9
5,6,3,9,4*,1*,8*,2,7
8*,2,9,6,5,3,7,4*,1
9,4,8,1*,6,5,3*,7,2
7,5,1,3*,2,9,6,8,4*
6*,3,2*,8*,7,4,9,1,5
1/1,1/2,1/3,2/1,2/2,2/3,3/3,4/3,5/3
1/4,1/5,1/6,2/4,2/5,3/4,3/5,4/4,4/5
1/7,2/7,2/8,3/7,3/8,4/7,4/8,5/7,6/7
1/8,1/9,2/9,3/9,4/9,5/8,5/9,6/8,6/9
2/6,3/6,4/6,5/4,5/5,5/6,6/4,6/5,6/6
3/1,3/2,4/1,4/2,5/1,5/2,6/1,6/2,7/1
6/3,7/2,7/3,8/1,8/2,8/3,9/1,9/2,9/3
7/4,7/5,7/6,8/4,8/5,9/4,9/5,9/6,9/7
7/7,7/8,7/9,8/6,8/7,8/8,8/9,9/8,9/9

As soon as I'd settled on a data format, I real-
ized that there was a significant problem with my
original design for setting up the game. As origi-
nally designed, cells are created and added to the
groups before data is read. For standard Sudoku,
that was no problem, but for the jigsaw variant, we
need the block data before we can add cells to their
blocks.

To handle this case, I broke the set-up process
down into different parts. I modified bizGame.
NewGame (which had been added to support start-
ing a new game through the UI), to receive the name
of the data file and then call three other methods to
set up the game, as shown in Listing 14.

Listing 14. The NewGame method of bizGame breaks creating
a new game into three steps:
LPARAMETERS	cGameFile

This.ReadData(m.cGameFile)
This.SetupGame()
This.ParseData()

RETURN

I also added a property to bizGame to hold the
raw data from the input file. In bizGame, ReadData
simply reads in the raw data and sets the game size,
as shown in Listing 15.

Listing 15. In bizGame, ReadData just grabs the raw data and
determines the game size.
LPARAMETERS	cDataFile

LOCAL	cContent
This.cRawData	=	FILETOSTR(m.cDataFile)
This.SetGameSize()

RETURN

bizGame.SetupGame is unchanged from the
version shown in the second article in this series.
The ParseData method contains the parsing code
that was previously in ReadData (Listing 10),
though it expects to find the data to parse in the
cRawData property rather than reading it from a
file.

November 2010 FoxRockX Page 23

With those changes made, I could subclass
bizGame to create bizGameJigsaw. The main
difference is the code in AddCellToBlock, shown in
Listing 16, which uses the data from the input file to
figure out which block to put the cell into.

Listing 16. In bizGameJigsaw, AddCellToBlock uses the input
file data to determine into which block to put a specified cell.
LPARAMETERS	oCell,	nRow,	nColumn

* Look up the row, column pair in the data
* to determine which block this cell goes in.

LOCAL	cPair,	nBlock,	nPos,	cDataRow,	nPosIn-
Block,	aDataRows[1],	aBlockData[1]

cPair	=	TRANSFORM(m.nRow)	+	"/"	+	;
								TRANSFORM(m.nColumn)

* Figure out which row of the raw data it's in
nPos	=	AT(m.cPair,	This.cRawData)
IF	m.nPos	>	0		&&	this	test	should	never	fail
 * The row contains the data for this block
		nBlock	=	OCCURS(CHR(13),	;
 LEFT(This.cRawData, m.nPos)) - ;
											This.nSize	+	1
		ALINES(aDataRows,	This.cRawData)
		cDataRow	=	aDataRows[This.nSize	+	m.nBlock]

		*	Now	find	this	pair	in	the	block	data	to	
 * get the position in the block
		ALINES(aBlockData,	m.cDataRow,	",")
		nPosInBlock	=	ASCAN(m.aBlockData,	m.cPair)

		This.oBlocks.AddCell(m.oCell,	m.nBlock,	;
																							m.nPosInBlock,	"B")
ENDIF

RETURN

Jigsaw Sudoku requires just one change
on the UI side. I subclassed cntBoard to create
cntBoardJigsaw, and overrode the AddDividers
method to draw the lines dividing the blocks. That
code is shown in Listing 17.

Listing 17. The AddDividers method in cntBoardJigsaw is more
complex than the version in cntBoard.
*	Add	the	dividers	for	this	game.	Strategy	is	
*	to	fill	an	array	the	shape	of	the	board	with	
* the block number that each cell belongs to,
*	and	then	use	that	data	to	figure	out	where	
* to add lines.

LOCAL	aBlockLayout[This.nSize,	This.nSize]
LOCAL	oCell,	oBlock,	nBlock,	nRow,	nCol
LOCAL	nCellHeight,	nCellWidth,	cLineName

FOR	nBlock	=	1	TO	This.nSize
 oBlock = ;
				This.oBizGame.oBlocks.GetGroup(m.nBlock)
		FOR	EACH	oCell	IN	m.oBlock	FOXOBJECT	
 nRow = oCell.nRow
 nCol = oCell.nColumn
				aBlockLayout[m.nRow,	m.nCol]	=	m.nBlock
		ENDFOR
ENDFOR	

nCellHeight = This.GetCellHeight()
nCellWidth = This.GetCellWidth()

*	Now	add	vertical	lines	by	going	through	each	
* row and seeing where blocks end.
FOR	nRow	=	1	TO	This.nSize
		nBlock	=	aBlockLayout[m.nRow,	1]
		FOR	nCol	=	2	TO	This.nSize
				IF	aBlockLayout[m.nRow,	m.nCol]	<>	;
 m.nBlock
						*	Add	a	divider
						cLineName	=	"linVerticalR"	+	;
																		TRANSFORM(m.nRow)	+	"C"	+	;
																		TRANSFORM(m.nCol)
						This.NewObject(m.cLineName,	;
 "linDividerVertical", ;
 "Components.VCX")
						oLine	=	EVALUATE("This."	+	;
																							m.cLineName)

						WITH	oLine
								.Left	=	(m.nCol-1)	*	(m.nCellWidth	+	;
																This.nSpaceBetween)	+	;
 This.nSpaceBetween/2
								.Top	=	(m.nRow-1)	*	(m.nCellHeight	+	;
															This.nSpaceBetween)	+	;
 This.nSpaceBetween/2
								.Height	=	m.nCellHeight	+	;
 This.nSpaceBetween
 .Visible = .T.
						ENDWITH	

						*	Now	watch	the	new	value
						nBlock	=	aBlockLayout[m.nRow,	m.nCol]
				ENDIF
		ENDFOR	
ENDFOR	

*	Now	add	horizontal	lines	the	same	way
FOR	nCol	=	1	TO	This.nSize
		nBlock	=	aBlockLayout[1,	m.nCol]
		FOR	nRow	=	2	TO	This.nSize
				IF	aBlockLayout[m.nRow,	m.nCol]	<>	;
 m.nBlock
						*	Add	a	divider
						cLineName	=	"linHorizontalR"	+	;
																		TRANSFORM(m.nRow)	+	"C"	+	;
																		TRANSFORM(m.nCol)
						This.NewObject(m.cLineName,	;
																					"linDividerHorizontal",	;
 "Components.VCX")
						oLine	=	EVALUATE("This."	+	m.cLineName)

						WITH	oLine
								.Left	=	(m.nCol-1)	*	(m.nCellWidth	+	;
																This.nSpaceBetween)	+	;
 This.nSpaceBetween/2
								.Top	=	(m.nRow-1)	*	(m.nCellHeight	+	;
															This.nSpaceBetween)	+	;
 This.nSpaceBetween/2
								.Width	=	m.nCellWidth	+	;
 This.nSpaceBetween
 .Visible = .T.
						ENDWITH	

						*	Now	watch	the	new	value
						nBlock	=	aBlockLayout[m.nRow,	m.nCol]
				ENDIF
		ENDFOR	
ENDFOR	

RETURN

With these changes, Jigsaw Sudoku works. No
changes are needed to any of the other business
classes or to any of the other UI classes.

Page 24 FoxRockX November 2010

What I've learned
Working on NMS and, to a lesser extent, Sudoku
finally made sense of business objects for me. I've
been truly amazed at the ease with which I've been
able to implement some changes in NMS, both
in the interface and the business logic. Often, the
hardest part has been understanding the new re-
quirement, and the change itself has required only
a few lines of code.

What a robust set of business objects gives you
is a clear separation between the underlying rules
of your application and the graphical objects you
use to represent them to the user. Creating business
objects encourages you to keep business logic out
of the user interface and user interface code out of
the business logic, as well as to put business logic in
one place and one place only.

The complete code for the final version of the
Sudoku game is included in this month's down-
loads

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for
businesses and other organizations. She currently
focuses on working with other developers through
consulting and subcontracting. Tamar is author or
co-author of ten books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office
Automation with VisualFoxPro and Taming Visual
FoxPro’s SQL . Her latest collaboration is Making
Sense of Sedna and SP2, now available. Her books
are available from Hentzenwerke Publishing (www.
hentzenwerke.com). Tamar is a Microsoft Support
Most Valuable Professional. In 2007, Tamar received
the Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

DOWNLOAD
Subscribers can download FR201011_code.zip in the SourceCode sub directory of the
document portal. It contains the following files:

doughennig201011_code.zip
Source code for the article “A More Flexible Report Designer” from Doug Hennig

tamargranor201011_code.zip
Source code for the article "Understanding Business Objects, Part 3" from Tamar Granor

uwehabermann201011_code.zip
Source code for the article “Silverlight Business Application" from Uwe Habermann

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2010 ISYS GmbH. This work is an independently produced
pub lication of ISYS GmbH, Kronberg, the content of which is the
property of ISYS GmbH or its affiliates or third-party licensors and which
is protected by copyright law in the U.S. and elsewhere. The right to copy
and publish the content is reserved, even for content made available for
free such as sample articles, tips, and graphics, none of which may be
copied in whole or in part or further distributed in any form or medium
without the express written permission of ISYS GmbH. Requests for
permission to copy or republish any content may be directed to Rainer
Becker.

FoxRockX, FoxTalk 2.0, FoxTalk and Visual Extend are trademarks of ISYS GmbH. All product names
or services identified throughout this journal are trademarks or registered trademarks of their respective
companies.

